Acquiring Commonsense Knowledge for Sentiment Analysis through Human Computation
نویسندگان
چکیده
Many Artificial Intelligence tasks need large amounts of commonsense knowledge. Because obtaining this knowledge through machine learning would require a huge amount of data, a better alternative is to elicit it from people through human computation. We consider the sentiment classification task, where knowledge about the contexts that impact word polarities is crucial, but hard to acquire from data. We describe a novel task design that allows us to crowdsource this knowledge through Amazon Mechanical Turk with high quality. We show that the commonsense knowledge acquired in this way dramatically improves the performance of established sentiment classification methods.
منابع مشابه
Acquiring Broad Commonsense Knowledge for Sentiment Analysis Using Human Computation
While artificial intelligence is successful in many applications that cover specific domains, for many commonsense problems there is still a large gap with human performance. Automated sentiment analysis is a typical example: while there are techniques that reasonably aggregate sentiments from texts in specific domains, such as online reviews of a particular product category, more general model...
متن کاملConstructing Context-Aware Sentiment Lexicons with an Asynchronous Game with a Purpose
One of the reasons sentiment lexicons do not reach human-level performance is that they lack the contexts that define the polarities of words. While obtaining this knowledge through machine learning would require huge amounts of data, context is commonsense knowledge for people, so human computation is a better choice. We identify context using a game with a purpose that increases the workers’ ...
متن کاملDetecting Implicit Expressions of Sentiment in Text Based on Commonsense Knowledge
Sentiment analysis is one of the recent, highly dynamic fields in Natural Language Processing. Most existing approaches are based on word-level analysis of texts and are able to detect only explicit expressions of sentiment. In this paper, we present an approach towards automatically detecting emotions (as underlying components of sentiment) from contexts in which no clues of sentiment appear, ...
متن کاملSenticNet 4: A Semantic Resource for Sentiment Analysis Based on Conceptual Primitives
An important difference between traditional AI systems and human intelligence is the human ability to harness commonsense knowledge gleaned from a lifetime of learning and experience to make informed decisions. This allows humans to adapt easily to novel situations where AI fails catastrophically due to a lack of situation-specific rules and generalization capabilities. Commonsense knowledge al...
متن کاملReasoning with Heterogeneous Knowledge for Commonsense Machine Comprehension
Reasoning with commonsense knowledge is critical for natural language understanding. Traditional methods for commonsense machine comprehension mostly only focus on one specific kind of knowledge, neglecting the fact that commonsense reasoning requires simultaneously considering different kinds of commonsense knowledge. In this paper, we propose a multi-knowledge reasoning method, which can expl...
متن کامل